# Import the relevant libraries
import pandas as pd
import numpy as np
data_preprocessed = pd.read_csv('Absenteeism-preprocessed.csv')
data_preprocessed.head()
| Reason_1 | Reason_2 | Reason_3 | Reason_4 | Month Value | Day of the Week | Transportation Expense | Distance to Work | Age | Daily Work Load Average | Body Mass Index | Education | Children | Pet | Absenteeism Time in Hours | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 0 | 0 | 0 | 0 | 1 | 7 | 1 | 289 | 36 | 33 | 239.554 | 30 | 0 | 2 | 1 | 4 | 
| 1 | 0 | 0 | 0 | 0 | 7 | 1 | 118 | 13 | 50 | 239.554 | 31 | 0 | 1 | 0 | 0 | 
| 2 | 0 | 0 | 0 | 1 | 7 | 2 | 179 | 51 | 38 | 239.554 | 31 | 0 | 0 | 0 | 2 | 
| 3 | 1 | 0 | 0 | 0 | 7 | 3 | 279 | 5 | 39 | 239.554 | 24 | 0 | 2 | 0 | 4 | 
| 4 | 0 | 0 | 0 | 1 | 7 | 3 | 289 | 36 | 33 | 239.554 | 30 | 0 | 2 | 1 | 2 | 
# Base line classification creation
data_preprocessed['Absenteeism Time in Hours'].median()
3.0
targets =np.where(data_preprocessed['Absenteeism Time in Hours']>  
                    data_preprocessed['Absenteeism Time in Hours'].median(), 1, 0)
targets
array([1, 0, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0,
       1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1,
       0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0,
       0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1,
       0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1,
       0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0,
       0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 1, 0, 0,
       1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1,
       0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1,
       1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1,
       1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1,
       0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0,
       0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 1, 1, 0, 0,
       0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1,
       1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0,
       1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0,
       1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0,
       0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1,
       1, 1, 1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1,
       1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1,
       0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1,
       1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 1, 1,
       1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1,
       1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1,
       1, 1, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0,
       1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1,
       0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0,
       0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0,
       0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1,
       0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0,
       1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1,
       1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0])
data_preprocessed['Absenteeism Time in Hours'] = targets
data_preprocessed.head()
| Reason_1 | Reason_2 | Reason_3 | Reason_4 | Month Value | Day of the Week | Transportation Expense | Distance to Work | Age | Daily Work Load Average | Body Mass Index | Education | Children | Pet | Absenteeism Time in Hours | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 0 | 0 | 0 | 0 | 1 | 7 | 1 | 289 | 36 | 33 | 239.554 | 30 | 0 | 2 | 1 | 1 | 
| 1 | 0 | 0 | 0 | 0 | 7 | 1 | 118 | 13 | 50 | 239.554 | 31 | 0 | 1 | 0 | 0 | 
| 2 | 0 | 0 | 0 | 1 | 7 | 2 | 179 | 51 | 38 | 239.554 | 31 | 0 | 0 | 0 | 0 | 
| 3 | 1 | 0 | 0 | 0 | 7 | 3 | 279 | 5 | 39 | 239.554 | 24 | 0 | 2 | 0 | 1 | 
| 4 | 0 | 0 | 0 | 1 | 7 | 3 | 289 | 36 | 33 | 239.554 | 30 | 0 | 2 | 1 | 0 | 
targets.sum()/ targets.shape[0]
0.45571428571428574
data_with_targets = data_preprocessed.drop(['Absenteeism Time in Hours'], axis=1)
data_with_targets is data_preprocessed
False
data_with_targets.head()
| Reason_1 | Reason_2 | Reason_3 | Reason_4 | Month Value | Day of the Week | Transportation Expense | Distance to Work | Age | Daily Work Load Average | Body Mass Index | Education | Children | Pet | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 0 | 0 | 0 | 0 | 1 | 7 | 1 | 289 | 36 | 33 | 239.554 | 30 | 0 | 2 | 1 | 
| 1 | 0 | 0 | 0 | 0 | 7 | 1 | 118 | 13 | 50 | 239.554 | 31 | 0 | 1 | 0 | 
| 2 | 0 | 0 | 0 | 1 | 7 | 2 | 179 | 51 | 38 | 239.554 | 31 | 0 | 0 | 0 | 
| 3 | 1 | 0 | 0 | 0 | 7 | 3 | 279 | 5 | 39 | 239.554 | 24 | 0 | 2 | 0 | 
| 4 | 0 | 0 | 0 | 1 | 7 | 3 | 289 | 36 | 33 | 239.554 | 30 | 0 | 2 | 1 | 
#Selecting input for regression
data_with_targets.shape
(700, 14)
data_with_targets.iloc[:,0:14]
| Reason_1 | Reason_2 | Reason_3 | Reason_4 | Month Value | Day of the Week | Transportation Expense | Distance to Work | Age | Daily Work Load Average | Body Mass Index | Education | Children | Pet | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 0 | 0 | 0 | 0 | 1 | 7 | 1 | 289 | 36 | 33 | 239.554 | 30 | 0 | 2 | 1 | 
| 1 | 0 | 0 | 0 | 0 | 7 | 1 | 118 | 13 | 50 | 239.554 | 31 | 0 | 1 | 0 | 
| 2 | 0 | 0 | 0 | 1 | 7 | 2 | 179 | 51 | 38 | 239.554 | 31 | 0 | 0 | 0 | 
| 3 | 1 | 0 | 0 | 0 | 7 | 3 | 279 | 5 | 39 | 239.554 | 24 | 0 | 2 | 0 | 
| 4 | 0 | 0 | 0 | 1 | 7 | 3 | 289 | 36 | 33 | 239.554 | 30 | 0 | 2 | 1 | 
| 5 | 0 | 0 | 0 | 1 | 10 | 2 | 179 | 51 | 38 | 239.554 | 31 | 0 | 0 | 0 | 
| 6 | 0 | 0 | 0 | 1 | 7 | 4 | 361 | 52 | 28 | 239.554 | 27 | 0 | 1 | 4 | 
| 7 | 0 | 0 | 0 | 1 | 7 | 4 | 260 | 50 | 36 | 239.554 | 23 | 0 | 4 | 0 | 
| 8 | 0 | 0 | 1 | 0 | 6 | 6 | 155 | 12 | 34 | 239.554 | 25 | 0 | 2 | 0 | 
| 9 | 0 | 0 | 0 | 1 | 7 | 0 | 235 | 11 | 37 | 239.554 | 29 | 1 | 1 | 1 | 
| 10 | 1 | 0 | 0 | 0 | 7 | 0 | 260 | 50 | 36 | 239.554 | 23 | 0 | 4 | 0 | 
| 11 | 1 | 0 | 0 | 0 | 7 | 1 | 260 | 50 | 36 | 239.554 | 23 | 0 | 4 | 0 | 
| 12 | 1 | 0 | 0 | 0 | 7 | 2 | 260 | 50 | 36 | 239.554 | 23 | 0 | 4 | 0 | 
| 13 | 1 | 0 | 0 | 0 | 7 | 2 | 179 | 51 | 38 | 239.554 | 31 | 0 | 0 | 0 | 
| 14 | 0 | 0 | 0 | 1 | 7 | 2 | 179 | 51 | 38 | 239.554 | 31 | 0 | 0 | 0 | 
| 15 | 1 | 0 | 0 | 0 | 7 | 4 | 246 | 25 | 41 | 239.554 | 23 | 0 | 0 | 0 | 
| 16 | 0 | 0 | 0 | 1 | 7 | 4 | 179 | 51 | 38 | 239.554 | 31 | 0 | 0 | 0 | 
| 17 | 0 | 0 | 1 | 0 | 7 | 0 | 179 | 51 | 38 | 239.554 | 31 | 0 | 0 | 0 | 
| 18 | 1 | 0 | 0 | 0 | 7 | 3 | 189 | 29 | 33 | 239.554 | 25 | 0 | 2 | 2 | 
| 19 | 0 | 0 | 0 | 1 | 5 | 4 | 248 | 25 | 47 | 205.917 | 32 | 0 | 2 | 1 | 
| 20 | 1 | 0 | 0 | 0 | 12 | 1 | 330 | 16 | 28 | 205.917 | 25 | 1 | 0 | 0 | 
| 21 | 1 | 0 | 0 | 0 | 3 | 6 | 179 | 51 | 38 | 205.917 | 31 | 0 | 0 | 0 | 
| 22 | 1 | 0 | 0 | 0 | 10 | 3 | 361 | 52 | 28 | 205.917 | 27 | 0 | 1 | 4 | 
| 23 | 0 | 0 | 0 | 1 | 8 | 4 | 260 | 50 | 36 | 205.917 | 23 | 0 | 4 | 0 | 
| 24 | 0 | 0 | 1 | 0 | 8 | 0 | 289 | 36 | 33 | 205.917 | 30 | 0 | 2 | 1 | 
| 25 | 0 | 0 | 0 | 1 | 8 | 0 | 361 | 52 | 28 | 205.917 | 27 | 0 | 1 | 4 | 
| 26 | 0 | 0 | 0 | 1 | 4 | 2 | 289 | 36 | 33 | 205.917 | 30 | 0 | 2 | 1 | 
| 27 | 0 | 0 | 0 | 1 | 12 | 1 | 157 | 27 | 29 | 205.917 | 22 | 0 | 0 | 0 | 
| 28 | 0 | 0 | 1 | 0 | 8 | 2 | 289 | 36 | 33 | 205.917 | 30 | 0 | 2 | 1 | 
| 29 | 0 | 0 | 0 | 1 | 8 | 4 | 179 | 51 | 38 | 205.917 | 31 | 0 | 0 | 0 | 
| ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | 
| 670 | 0 | 0 | 0 | 1 | 4 | 1 | 155 | 12 | 34 | 246.288 | 25 | 0 | 2 | 0 | 
| 671 | 0 | 0 | 1 | 0 | 4 | 3 | 225 | 26 | 28 | 246.288 | 24 | 0 | 1 | 2 | 
| 672 | 1 | 0 | 0 | 0 | 4 | 3 | 118 | 13 | 50 | 246.288 | 31 | 0 | 1 | 0 | 
| 673 | 0 | 0 | 0 | 1 | 4 | 4 | 179 | 26 | 30 | 246.288 | 19 | 1 | 0 | 0 | 
| 674 | 0 | 0 | 0 | 1 | 7 | 3 | 235 | 11 | 37 | 237.656 | 29 | 1 | 1 | 1 | 
| 675 | 0 | 0 | 1 | 0 | 9 | 2 | 225 | 15 | 41 | 237.656 | 28 | 1 | 2 | 2 | 
| 676 | 0 | 0 | 0 | 1 | 9 | 2 | 235 | 16 | 32 | 237.656 | 25 | 1 | 0 | 0 | 
| 677 | 1 | 0 | 0 | 0 | 9 | 2 | 118 | 10 | 37 | 237.656 | 28 | 0 | 0 | 0 | 
| 678 | 0 | 0 | 0 | 1 | 9 | 2 | 235 | 20 | 43 | 237.656 | 38 | 0 | 1 | 0 | 
| 679 | 1 | 0 | 0 | 0 | 10 | 4 | 179 | 26 | 30 | 237.656 | 19 | 1 | 0 | 0 | 
| 680 | 0 | 0 | 0 | 1 | 10 | 4 | 291 | 31 | 40 | 237.656 | 25 | 0 | 1 | 1 | 
| 681 | 1 | 0 | 0 | 0 | 10 | 4 | 225 | 15 | 41 | 237.656 | 28 | 1 | 2 | 2 | 
| 682 | 0 | 0 | 1 | 0 | 11 | 0 | 300 | 26 | 43 | 237.656 | 25 | 0 | 2 | 1 | 
| 683 | 0 | 0 | 0 | 1 | 11 | 0 | 225 | 15 | 41 | 237.656 | 28 | 1 | 2 | 2 | 
| 684 | 0 | 0 | 0 | 1 | 11 | 0 | 179 | 26 | 30 | 237.656 | 19 | 1 | 0 | 0 | 
| 685 | 0 | 0 | 0 | 1 | 5 | 0 | 118 | 13 | 50 | 237.656 | 31 | 0 | 1 | 0 | 
| 686 | 1 | 0 | 0 | 0 | 5 | 1 | 118 | 13 | 50 | 237.656 | 31 | 0 | 1 | 0 | 
| 687 | 0 | 0 | 0 | 1 | 5 | 1 | 118 | 10 | 37 | 237.656 | 28 | 0 | 0 | 0 | 
| 688 | 0 | 0 | 0 | 0 | 5 | 1 | 118 | 13 | 50 | 237.656 | 31 | 0 | 1 | 0 | 
| 689 | 0 | 0 | 0 | 1 | 5 | 2 | 179 | 26 | 30 | 237.656 | 19 | 1 | 0 | 0 | 
| 690 | 0 | 0 | 0 | 0 | 5 | 2 | 378 | 49 | 36 | 237.656 | 21 | 0 | 2 | 4 | 
| 691 | 0 | 1 | 0 | 0 | 5 | 4 | 179 | 22 | 40 | 237.656 | 22 | 1 | 2 | 0 | 
| 692 | 1 | 0 | 0 | 0 | 5 | 0 | 155 | 12 | 34 | 237.656 | 25 | 0 | 2 | 0 | 
| 693 | 1 | 0 | 0 | 0 | 5 | 0 | 235 | 16 | 32 | 237.656 | 25 | 1 | 0 | 0 | 
| 694 | 0 | 0 | 0 | 1 | 5 | 2 | 291 | 31 | 40 | 237.656 | 25 | 0 | 1 | 1 | 
| 695 | 1 | 0 | 0 | 0 | 5 | 2 | 179 | 22 | 40 | 237.656 | 22 | 1 | 2 | 0 | 
| 696 | 1 | 0 | 0 | 0 | 5 | 2 | 225 | 26 | 28 | 237.656 | 24 | 0 | 1 | 2 | 
| 697 | 1 | 0 | 0 | 0 | 5 | 3 | 330 | 16 | 28 | 237.656 | 25 | 1 | 0 | 0 | 
| 698 | 0 | 0 | 0 | 1 | 5 | 3 | 235 | 16 | 32 | 237.656 | 25 | 1 | 0 | 0 | 
| 699 | 0 | 0 | 0 | 1 | 5 | 3 | 291 | 31 | 40 | 237.656 | 25 | 0 | 1 | 1 | 
700 rows × 14 columns
data_with_targets.iloc[:,: -1]
| Reason_1 | Reason_2 | Reason_3 | Reason_4 | Month Value | Day of the Week | Transportation Expense | Distance to Work | Age | Daily Work Load Average | Body Mass Index | Education | Children | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 0 | 0 | 0 | 0 | 1 | 7 | 1 | 289 | 36 | 33 | 239.554 | 30 | 0 | 2 | 
| 1 | 0 | 0 | 0 | 0 | 7 | 1 | 118 | 13 | 50 | 239.554 | 31 | 0 | 1 | 
| 2 | 0 | 0 | 0 | 1 | 7 | 2 | 179 | 51 | 38 | 239.554 | 31 | 0 | 0 | 
| 3 | 1 | 0 | 0 | 0 | 7 | 3 | 279 | 5 | 39 | 239.554 | 24 | 0 | 2 | 
| 4 | 0 | 0 | 0 | 1 | 7 | 3 | 289 | 36 | 33 | 239.554 | 30 | 0 | 2 | 
| 5 | 0 | 0 | 0 | 1 | 10 | 2 | 179 | 51 | 38 | 239.554 | 31 | 0 | 0 | 
| 6 | 0 | 0 | 0 | 1 | 7 | 4 | 361 | 52 | 28 | 239.554 | 27 | 0 | 1 | 
| 7 | 0 | 0 | 0 | 1 | 7 | 4 | 260 | 50 | 36 | 239.554 | 23 | 0 | 4 | 
| 8 | 0 | 0 | 1 | 0 | 6 | 6 | 155 | 12 | 34 | 239.554 | 25 | 0 | 2 | 
| 9 | 0 | 0 | 0 | 1 | 7 | 0 | 235 | 11 | 37 | 239.554 | 29 | 1 | 1 | 
| 10 | 1 | 0 | 0 | 0 | 7 | 0 | 260 | 50 | 36 | 239.554 | 23 | 0 | 4 | 
| 11 | 1 | 0 | 0 | 0 | 7 | 1 | 260 | 50 | 36 | 239.554 | 23 | 0 | 4 | 
| 12 | 1 | 0 | 0 | 0 | 7 | 2 | 260 | 50 | 36 | 239.554 | 23 | 0 | 4 | 
| 13 | 1 | 0 | 0 | 0 | 7 | 2 | 179 | 51 | 38 | 239.554 | 31 | 0 | 0 | 
| 14 | 0 | 0 | 0 | 1 | 7 | 2 | 179 | 51 | 38 | 239.554 | 31 | 0 | 0 | 
| 15 | 1 | 0 | 0 | 0 | 7 | 4 | 246 | 25 | 41 | 239.554 | 23 | 0 | 0 | 
| 16 | 0 | 0 | 0 | 1 | 7 | 4 | 179 | 51 | 38 | 239.554 | 31 | 0 | 0 | 
| 17 | 0 | 0 | 1 | 0 | 7 | 0 | 179 | 51 | 38 | 239.554 | 31 | 0 | 0 | 
| 18 | 1 | 0 | 0 | 0 | 7 | 3 | 189 | 29 | 33 | 239.554 | 25 | 0 | 2 | 
| 19 | 0 | 0 | 0 | 1 | 5 | 4 | 248 | 25 | 47 | 205.917 | 32 | 0 | 2 | 
| 20 | 1 | 0 | 0 | 0 | 12 | 1 | 330 | 16 | 28 | 205.917 | 25 | 1 | 0 | 
| 21 | 1 | 0 | 0 | 0 | 3 | 6 | 179 | 51 | 38 | 205.917 | 31 | 0 | 0 | 
| 22 | 1 | 0 | 0 | 0 | 10 | 3 | 361 | 52 | 28 | 205.917 | 27 | 0 | 1 | 
| 23 | 0 | 0 | 0 | 1 | 8 | 4 | 260 | 50 | 36 | 205.917 | 23 | 0 | 4 | 
| 24 | 0 | 0 | 1 | 0 | 8 | 0 | 289 | 36 | 33 | 205.917 | 30 | 0 | 2 | 
| 25 | 0 | 0 | 0 | 1 | 8 | 0 | 361 | 52 | 28 | 205.917 | 27 | 0 | 1 | 
| 26 | 0 | 0 | 0 | 1 | 4 | 2 | 289 | 36 | 33 | 205.917 | 30 | 0 | 2 | 
| 27 | 0 | 0 | 0 | 1 | 12 | 1 | 157 | 27 | 29 | 205.917 | 22 | 0 | 0 | 
| 28 | 0 | 0 | 1 | 0 | 8 | 2 | 289 | 36 | 33 | 205.917 | 30 | 0 | 2 | 
| 29 | 0 | 0 | 0 | 1 | 8 | 4 | 179 | 51 | 38 | 205.917 | 31 | 0 | 0 | 
| ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | 
| 670 | 0 | 0 | 0 | 1 | 4 | 1 | 155 | 12 | 34 | 246.288 | 25 | 0 | 2 | 
| 671 | 0 | 0 | 1 | 0 | 4 | 3 | 225 | 26 | 28 | 246.288 | 24 | 0 | 1 | 
| 672 | 1 | 0 | 0 | 0 | 4 | 3 | 118 | 13 | 50 | 246.288 | 31 | 0 | 1 | 
| 673 | 0 | 0 | 0 | 1 | 4 | 4 | 179 | 26 | 30 | 246.288 | 19 | 1 | 0 | 
| 674 | 0 | 0 | 0 | 1 | 7 | 3 | 235 | 11 | 37 | 237.656 | 29 | 1 | 1 | 
| 675 | 0 | 0 | 1 | 0 | 9 | 2 | 225 | 15 | 41 | 237.656 | 28 | 1 | 2 | 
| 676 | 0 | 0 | 0 | 1 | 9 | 2 | 235 | 16 | 32 | 237.656 | 25 | 1 | 0 | 
| 677 | 1 | 0 | 0 | 0 | 9 | 2 | 118 | 10 | 37 | 237.656 | 28 | 0 | 0 | 
| 678 | 0 | 0 | 0 | 1 | 9 | 2 | 235 | 20 | 43 | 237.656 | 38 | 0 | 1 | 
| 679 | 1 | 0 | 0 | 0 | 10 | 4 | 179 | 26 | 30 | 237.656 | 19 | 1 | 0 | 
| 680 | 0 | 0 | 0 | 1 | 10 | 4 | 291 | 31 | 40 | 237.656 | 25 | 0 | 1 | 
| 681 | 1 | 0 | 0 | 0 | 10 | 4 | 225 | 15 | 41 | 237.656 | 28 | 1 | 2 | 
| 682 | 0 | 0 | 1 | 0 | 11 | 0 | 300 | 26 | 43 | 237.656 | 25 | 0 | 2 | 
| 683 | 0 | 0 | 0 | 1 | 11 | 0 | 225 | 15 | 41 | 237.656 | 28 | 1 | 2 | 
| 684 | 0 | 0 | 0 | 1 | 11 | 0 | 179 | 26 | 30 | 237.656 | 19 | 1 | 0 | 
| 685 | 0 | 0 | 0 | 1 | 5 | 0 | 118 | 13 | 50 | 237.656 | 31 | 0 | 1 | 
| 686 | 1 | 0 | 0 | 0 | 5 | 1 | 118 | 13 | 50 | 237.656 | 31 | 0 | 1 | 
| 687 | 0 | 0 | 0 | 1 | 5 | 1 | 118 | 10 | 37 | 237.656 | 28 | 0 | 0 | 
| 688 | 0 | 0 | 0 | 0 | 5 | 1 | 118 | 13 | 50 | 237.656 | 31 | 0 | 1 | 
| 689 | 0 | 0 | 0 | 1 | 5 | 2 | 179 | 26 | 30 | 237.656 | 19 | 1 | 0 | 
| 690 | 0 | 0 | 0 | 0 | 5 | 2 | 378 | 49 | 36 | 237.656 | 21 | 0 | 2 | 
| 691 | 0 | 1 | 0 | 0 | 5 | 4 | 179 | 22 | 40 | 237.656 | 22 | 1 | 2 | 
| 692 | 1 | 0 | 0 | 0 | 5 | 0 | 155 | 12 | 34 | 237.656 | 25 | 0 | 2 | 
| 693 | 1 | 0 | 0 | 0 | 5 | 0 | 235 | 16 | 32 | 237.656 | 25 | 1 | 0 | 
| 694 | 0 | 0 | 0 | 1 | 5 | 2 | 291 | 31 | 40 | 237.656 | 25 | 0 | 1 | 
| 695 | 1 | 0 | 0 | 0 | 5 | 2 | 179 | 22 | 40 | 237.656 | 22 | 1 | 2 | 
| 696 | 1 | 0 | 0 | 0 | 5 | 2 | 225 | 26 | 28 | 237.656 | 24 | 0 | 1 | 
| 697 | 1 | 0 | 0 | 0 | 5 | 3 | 330 | 16 | 28 | 237.656 | 25 | 1 | 0 | 
| 698 | 0 | 0 | 0 | 1 | 5 | 3 | 235 | 16 | 32 | 237.656 | 25 | 1 | 0 | 
| 699 | 0 | 0 | 0 | 1 | 5 | 3 | 291 | 31 | 40 | 237.656 | 25 | 0 | 1 | 
700 rows × 13 columns
unscaled_inputs = data_with_targets.iloc[:,: -1]
#from sklearn.preprocessing import StandardScaler
#absenteeism_scaler = StandardScaler()
from sklearn.base import BaseEstimator, TransformerMixin
from sklearn.preprocessing import StandardScaler
class CustomScaler(BaseEstimator,TransformerMixin): 
    
    def __init__(self,columns,copy=True,with_mean=True,with_std=True):
        self.scaler = StandardScaler(copy,with_mean,with_std)
        self.columns = columns
        self.mean_ = None
        self.var_ = None
        
    def fit(self, X, y=None):
        self.scaler.fit(X[self.columns], y)
        self.mean_ = np.mean(X[self.columns])
        self.var_ = np.var(X[self.columns])
        return self
    def transform(self, X, y=None, copy=None):
        init_col_order = X.columns
        X_scaled = pd.DataFrame(self.scaler.transform(X[self.columns]), columns=self.columns)
        X_not_scaled = X.loc[:,~X.columns.isin(self.columns)]
        return pd.concat([X_not_scaled, X_scaled], axis=1)[init_col_order]
unscaled_inputs.columns.values
array(['Reason_1', 'Reason_2', 'Reason_3', 'Reason_4', 'Month Value',
       'Day of the Week', 'Transportation Expense', 'Distance to Work',
       'Age', 'Daily Work Load Average', 'Body Mass Index', 'Education',
       'Children'], dtype=object)
columns_to_omit = ['Reason_1', 'Reason_2', 'Reason_3', 'Reason_4','Education']
columns_to_scale = [x for x in unscaled_inputs.columns.values if x not in columns_to_omit]
absenteeism_scaler = CustomScaler(columns_to_scale)
absenteeism_scaler.fit(unscaled_inputs)
C:\Users\User\Anaconda3\lib\site-packages\sklearn\preprocessing\data.py:645: DataConversionWarning: Data with input dtype int64, float64 were all converted to float64 by StandardScaler. return self.partial_fit(X, y)
CustomScaler(columns=['Month Value', 'Day of the Week', 'Transportation Expense', 'Distance to Work', 'Age', 'Daily Work Load Average', 'Body Mass Index', 'Children'],
       copy=None, with_mean=None, with_std=None)
scaled_inputs = absenteeism_scaler.transform(unscaled_inputs)
C:\Users\User\Anaconda3\lib\site-packages\ipykernel_launcher.py:20: DataConversionWarning: Data with input dtype int64, float64 were all converted to float64 by StandardScaler.
scaled_inputs
| Reason_1 | Reason_2 | Reason_3 | Reason_4 | Month Value | Day of the Week | Transportation Expense | Distance to Work | Age | Daily Work Load Average | Body Mass Index | Education | Children | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 0 | 0 | 0 | 0 | 1 | 0.030796 | -0.800950 | 1.005844 | 0.412816 | -0.536062 | -0.806331 | 0.767431 | 0 | 0.880469 | 
| 1 | 0 | 0 | 0 | 0 | 0.030796 | -0.800950 | -1.574681 | -1.141882 | 2.130803 | -0.806331 | 1.002633 | 0 | -0.019280 | 
| 2 | 0 | 0 | 0 | 1 | 0.030796 | -0.232900 | -0.654143 | 1.426749 | 0.248310 | -0.806331 | 1.002633 | 0 | -0.919030 | 
| 3 | 1 | 0 | 0 | 0 | 0.030796 | 0.335149 | 0.854936 | -1.682647 | 0.405184 | -0.806331 | -0.643782 | 0 | 0.880469 | 
| 4 | 0 | 0 | 0 | 1 | 0.030796 | 0.335149 | 1.005844 | 0.412816 | -0.536062 | -0.806331 | 0.767431 | 0 | 0.880469 | 
| 5 | 0 | 0 | 0 | 1 | 0.929019 | -0.232900 | -0.654143 | 1.426749 | 0.248310 | -0.806331 | 1.002633 | 0 | -0.919030 | 
| 6 | 0 | 0 | 0 | 1 | 0.030796 | 0.903199 | 2.092381 | 1.494345 | -1.320435 | -0.806331 | 0.061825 | 0 | -0.019280 | 
| 7 | 0 | 0 | 0 | 1 | 0.030796 | 0.903199 | 0.568211 | 1.359154 | -0.065439 | -0.806331 | -0.878984 | 0 | 2.679969 | 
| 8 | 0 | 0 | 1 | 0 | -0.268611 | 2.039298 | -1.016322 | -1.209478 | -0.379188 | -0.806331 | -0.408580 | 0 | 0.880469 | 
| 9 | 0 | 0 | 0 | 1 | 0.030796 | -1.368999 | 0.190942 | -1.277074 | 0.091435 | -0.806331 | 0.532229 | 1 | -0.019280 | 
| 10 | 1 | 0 | 0 | 0 | 0.030796 | -1.368999 | 0.568211 | 1.359154 | -0.065439 | -0.806331 | -0.878984 | 0 | 2.679969 | 
| 11 | 1 | 0 | 0 | 0 | 0.030796 | -0.800950 | 0.568211 | 1.359154 | -0.065439 | -0.806331 | -0.878984 | 0 | 2.679969 | 
| 12 | 1 | 0 | 0 | 0 | 0.030796 | -0.232900 | 0.568211 | 1.359154 | -0.065439 | -0.806331 | -0.878984 | 0 | 2.679969 | 
| 13 | 1 | 0 | 0 | 0 | 0.030796 | -0.232900 | -0.654143 | 1.426749 | 0.248310 | -0.806331 | 1.002633 | 0 | -0.919030 | 
| 14 | 0 | 0 | 0 | 1 | 0.030796 | -0.232900 | -0.654143 | 1.426749 | 0.248310 | -0.806331 | 1.002633 | 0 | -0.919030 | 
| 15 | 1 | 0 | 0 | 0 | 0.030796 | 0.903199 | 0.356940 | -0.330735 | 0.718933 | -0.806331 | -0.878984 | 0 | -0.919030 | 
| 16 | 0 | 0 | 0 | 1 | 0.030796 | 0.903199 | -0.654143 | 1.426749 | 0.248310 | -0.806331 | 1.002633 | 0 | -0.919030 | 
| 17 | 0 | 0 | 1 | 0 | 0.030796 | -1.368999 | -0.654143 | 1.426749 | 0.248310 | -0.806331 | 1.002633 | 0 | -0.919030 | 
| 18 | 1 | 0 | 0 | 0 | 0.030796 | 0.335149 | -0.503235 | -0.060353 | -0.536062 | -0.806331 | -0.408580 | 0 | 0.880469 | 
| 19 | 0 | 0 | 0 | 1 | -0.568019 | 0.903199 | 0.387122 | -0.330735 | 1.660180 | -1.647399 | 1.237836 | 0 | 0.880469 | 
| 20 | 1 | 0 | 0 | 0 | 1.527833 | -0.800950 | 1.624567 | -0.939096 | -1.320435 | -1.647399 | -0.408580 | 1 | -0.919030 | 
| 21 | 1 | 0 | 0 | 0 | -1.166834 | 2.039298 | -0.654143 | 1.426749 | 0.248310 | -1.647399 | 1.002633 | 0 | -0.919030 | 
| 22 | 1 | 0 | 0 | 0 | 0.929019 | 0.335149 | 2.092381 | 1.494345 | -1.320435 | -1.647399 | 0.061825 | 0 | -0.019280 | 
| 23 | 0 | 0 | 0 | 1 | 0.330204 | 0.903199 | 0.568211 | 1.359154 | -0.065439 | -1.647399 | -0.878984 | 0 | 2.679969 | 
| 24 | 0 | 0 | 1 | 0 | 0.330204 | -1.368999 | 1.005844 | 0.412816 | -0.536062 | -1.647399 | 0.767431 | 0 | 0.880469 | 
| 25 | 0 | 0 | 0 | 1 | 0.330204 | -1.368999 | 2.092381 | 1.494345 | -1.320435 | -1.647399 | 0.061825 | 0 | -0.019280 | 
| 26 | 0 | 0 | 0 | 1 | -0.867426 | -0.232900 | 1.005844 | 0.412816 | -0.536062 | -1.647399 | 0.767431 | 0 | 0.880469 | 
| 27 | 0 | 0 | 0 | 1 | 1.527833 | -0.800950 | -0.986140 | -0.195544 | -1.163560 | -1.647399 | -1.114186 | 0 | -0.919030 | 
| 28 | 0 | 0 | 1 | 0 | 0.330204 | -0.232900 | 1.005844 | 0.412816 | -0.536062 | -1.647399 | 0.767431 | 0 | 0.880469 | 
| 29 | 0 | 0 | 0 | 1 | 0.330204 | 0.903199 | -0.654143 | 1.426749 | 0.248310 | -1.647399 | 1.002633 | 0 | -0.919030 | 
| ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | 
| 670 | 0 | 0 | 0 | 1 | -0.867426 | -0.800950 | -1.016322 | -1.209478 | -0.379188 | -0.637953 | -0.408580 | 0 | 0.880469 | 
| 671 | 0 | 0 | 1 | 0 | -0.867426 | 0.335149 | 0.040034 | -0.263140 | -1.320435 | -0.637953 | -0.643782 | 0 | -0.019280 | 
| 672 | 1 | 0 | 0 | 0 | -0.867426 | 0.335149 | -1.574681 | -1.141882 | 2.130803 | -0.637953 | 1.002633 | 0 | -0.019280 | 
| 673 | 0 | 0 | 0 | 1 | -0.867426 | 0.903199 | -0.654143 | -0.263140 | -1.006686 | -0.637953 | -1.819793 | 1 | -0.919030 | 
| 674 | 0 | 0 | 0 | 1 | 0.030796 | 0.335149 | 0.190942 | -1.277074 | 0.091435 | -0.853789 | 0.532229 | 1 | -0.019280 | 
| 675 | 0 | 0 | 1 | 0 | 0.629611 | -0.232900 | 0.040034 | -1.006691 | 0.718933 | -0.853789 | 0.297027 | 1 | 0.880469 | 
| 676 | 0 | 0 | 0 | 1 | 0.629611 | -0.232900 | 0.190942 | -0.939096 | -0.692937 | -0.853789 | -0.408580 | 1 | -0.919030 | 
| 677 | 1 | 0 | 0 | 0 | 0.629611 | -0.232900 | -1.574681 | -1.344669 | 0.091435 | -0.853789 | 0.297027 | 0 | -0.919030 | 
| 678 | 0 | 0 | 0 | 1 | 0.629611 | -0.232900 | 0.190942 | -0.668713 | 1.032682 | -0.853789 | 2.649049 | 0 | -0.019280 | 
| 679 | 1 | 0 | 0 | 0 | 0.929019 | 0.903199 | -0.654143 | -0.263140 | -1.006686 | -0.853789 | -1.819793 | 1 | -0.919030 | 
| 680 | 0 | 0 | 0 | 1 | 0.929019 | 0.903199 | 1.036026 | 0.074838 | 0.562059 | -0.853789 | -0.408580 | 0 | -0.019280 | 
| 681 | 1 | 0 | 0 | 0 | 0.929019 | 0.903199 | 0.040034 | -1.006691 | 0.718933 | -0.853789 | 0.297027 | 1 | 0.880469 | 
| 682 | 0 | 0 | 1 | 0 | 1.228426 | -1.368999 | 1.171843 | -0.263140 | 1.032682 | -0.853789 | -0.408580 | 0 | 0.880469 | 
| 683 | 0 | 0 | 0 | 1 | 1.228426 | -1.368999 | 0.040034 | -1.006691 | 0.718933 | -0.853789 | 0.297027 | 1 | 0.880469 | 
| 684 | 0 | 0 | 0 | 1 | 1.228426 | -1.368999 | -0.654143 | -0.263140 | -1.006686 | -0.853789 | -1.819793 | 1 | -0.919030 | 
| 685 | 0 | 0 | 0 | 1 | -0.568019 | -1.368999 | -1.574681 | -1.141882 | 2.130803 | -0.853789 | 1.002633 | 0 | -0.019280 | 
| 686 | 1 | 0 | 0 | 0 | -0.568019 | -0.800950 | -1.574681 | -1.141882 | 2.130803 | -0.853789 | 1.002633 | 0 | -0.019280 | 
| 687 | 0 | 0 | 0 | 1 | -0.568019 | -0.800950 | -1.574681 | -1.344669 | 0.091435 | -0.853789 | 0.297027 | 0 | -0.919030 | 
| 688 | 0 | 0 | 0 | 0 | -0.568019 | -0.800950 | -1.574681 | -1.141882 | 2.130803 | -0.853789 | 1.002633 | 0 | -0.019280 | 
| 689 | 0 | 0 | 0 | 1 | -0.568019 | -0.232900 | -0.654143 | -0.263140 | -1.006686 | -0.853789 | -1.819793 | 1 | -0.919030 | 
| 690 | 0 | 0 | 0 | 0 | -0.568019 | -0.232900 | 2.348925 | 1.291558 | -0.065439 | -0.853789 | -1.349389 | 0 | 0.880469 | 
| 691 | 0 | 1 | 0 | 0 | -0.568019 | 0.903199 | -0.654143 | -0.533522 | 0.562059 | -0.853789 | -1.114186 | 1 | 0.880469 | 
| 692 | 1 | 0 | 0 | 0 | -0.568019 | -1.368999 | -1.016322 | -1.209478 | -0.379188 | -0.853789 | -0.408580 | 0 | 0.880469 | 
| 693 | 1 | 0 | 0 | 0 | -0.568019 | -1.368999 | 0.190942 | -0.939096 | -0.692937 | -0.853789 | -0.408580 | 1 | -0.919030 | 
| 694 | 0 | 0 | 0 | 1 | -0.568019 | -0.232900 | 1.036026 | 0.074838 | 0.562059 | -0.853789 | -0.408580 | 0 | -0.019280 | 
| 695 | 1 | 0 | 0 | 0 | -0.568019 | -0.232900 | -0.654143 | -0.533522 | 0.562059 | -0.853789 | -1.114186 | 1 | 0.880469 | 
| 696 | 1 | 0 | 0 | 0 | -0.568019 | -0.232900 | 0.040034 | -0.263140 | -1.320435 | -0.853789 | -0.643782 | 0 | -0.019280 | 
| 697 | 1 | 0 | 0 | 0 | -0.568019 | 0.335149 | 1.624567 | -0.939096 | -1.320435 | -0.853789 | -0.408580 | 1 | -0.919030 | 
| 698 | 0 | 0 | 0 | 1 | -0.568019 | 0.335149 | 0.190942 | -0.939096 | -0.692937 | -0.853789 | -0.408580 | 1 | -0.919030 | 
| 699 | 0 | 0 | 0 | 1 | -0.568019 | 0.335149 | 1.036026 | 0.074838 | 0.562059 | -0.853789 | -0.408580 | 0 | -0.019280 | 
700 rows × 13 columns
scaled_inputs.shape
(700, 13)
# Split the data into train and test
from sklearn.model_selection import train_test_split
train_test_split(scaled_inputs, targets)
[     Reason_1  Reason_2  Reason_3  Reason_4  Month Value  Day of the Week  \
 270         1         0         0         0    -0.568019        -1.368999   
 555         1         0         0         0    -0.568019         0.903199   
 106         0         0         0         1     0.929019        -1.368999   
 388         0         0         0         1    -1.466241        -0.232900   
 1           0         0         0         0     0.030796        -0.800950   
 415         0         0         0         1     0.929019        -0.232900   
 670         0         0         0         1    -0.867426        -0.800950   
 611         1         0         0         0    -1.466241        -1.368999   
 141         0         0         0         1     1.228426        -0.232900   
 416         0         0         0         1     0.929019        -0.232900   
 500         0         0         0         1     0.330204        -0.232900   
 184         0         0         0         1    -0.268611         1.471248   
 253         0         0         1         0     1.228426        -0.800950   
 525         1         0         0         0     0.929019         0.903199   
 577         0         0         1         0     1.527833         1.471248   
 665         0         0         0         1    -0.867426         0.903199   
 526         1         0         0         0     0.929019         0.903199   
 619         0         0         0         1    -0.568019         0.335149   
 605         0         0         0         1    -1.466241        -0.232900   
 173         1         0         0         0    -1.166834        -0.800950   
 151         0         0         1         0    -1.466241        -1.368999   
 87          1         0         0         0     1.228426        -1.368999   
 343         0         0         0         1    -0.268611         2.039298   
 276         0         0         0         0     0.629611        -0.800950   
 167         1         0         0         0    -1.166834        -0.800950   
 117         0         0         0         1    -0.268611        -0.232900   
 366         0         0         0         1    -1.765648        -1.368999   
 204         1         0         0         0    -0.867426        -0.800950   
 214         0         0         0         0    -0.568019        -0.232900   
 53          0         0         0         1     0.629611        -0.800950   
 ..        ...       ...       ...       ...          ...              ...   
 321         0         0         0         1     1.228426        -1.368999   
 257         1         0         0         0     0.929019         1.471248   
 672         1         0         0         0    -0.867426         0.335149   
 509         0         0         0         1    -0.268611         1.471248   
 493         0         0         0         1     0.330204         0.335149   
 626         0         0         0         1     0.330204         0.903199   
 693         1         0         0         0    -0.568019        -1.368999   
 441         0         0         0         1    -0.568019         1.471248   
 467         0         0         0         1     0.030796        -0.800950   
 10          1         0         0         0     0.030796        -1.368999   
 194         1         0         0         0     0.330204         0.335149   
 681         1         0         0         0     0.929019         0.903199   
 678         0         0         0         1     0.629611        -0.232900   
 110         0         0         0         1     1.228426         0.335149   
 223         0         0         0         1    -0.268611         0.335149   
 455         1         0         0         0    -0.268611        -0.232900   
 142         0         0         0         1     1.527833         0.903199   
 674         0         0         0         1     0.030796         0.335149   
 314         1         0         0         0     0.929019         0.903199   
 40          0         0         0         1    -1.765648         0.903199   
 23          0         0         0         1     0.330204         0.903199   
 92          1         0         0         0     1.228426         0.903199   
 682         0         0         1         0     1.228426        -1.368999   
 22          1         0         0         0     0.929019         0.335149   
 68          0         0         0         1    -0.268611        -0.232900   
 20          1         0         0         0     1.527833        -0.800950   
 538         1         0         0         0     1.228426         0.903199   
 120         0         0         0         1     0.330204        -1.368999   
 176         1         0         0         0    -1.166834        -1.368999   
 466         0         0         0         1     0.030796        -1.368999   
 
      Transportation Expense  Distance to Work       Age  \
 270               -0.654143          1.426749  0.248310   
 555               -0.654143          1.426749  0.248310   
 106                0.040034         -0.263140 -1.320435   
 388               -0.654143          1.426749  0.248310   
 1                 -1.574681         -1.141882  2.130803   
 415                2.213108         -0.871500 -0.849811   
 670               -1.016322         -1.209478 -0.379188   
 611                0.040034         -0.263140 -1.320435   
 141               -0.503235         -0.060353 -0.536062   
 416                0.387122         -0.330735  1.660180   
 500               -0.654143         -0.263140 -1.006686   
 184                1.036026          0.074838  0.562059   
 253               -0.986140         -0.195544 -1.163560   
 525                2.213108         -0.871500 -0.849811   
 577               -0.654143         -0.533522  0.562059   
 665                0.190942         -1.277074  0.091435   
 526                0.040034         -0.263140 -1.320435   
 619                0.387122         -0.330735  1.660180   
 605               -0.654143          1.426749  0.248310   
 173               -0.654143          1.426749  0.248310   
 151                1.624567         -0.939096 -1.320435   
 87                 1.036026          0.074838  0.562059   
 343               -1.574681         -1.141882  2.130803   
 276                0.130578          0.345220  0.405184   
 167               -1.016322         -1.209478 -0.379188   
 117                0.040034         -0.263140 -1.320435   
 366               -1.574681         -1.141882  2.130803   
 204                1.005844          0.412816 -0.536062   
 214                1.624567         -0.939096 -1.320435   
 53                -1.574681         -1.344669  0.091435   
 ..                      ...               ...       ...   
 321                1.036026          0.074838  0.562059   
 257                1.171843         -0.263140  1.032682   
 672               -1.574681         -1.141882  2.130803   
 509                0.356940         -0.330735  0.718933   
 493                1.036026          0.074838  0.562059   
 626                0.040034         -0.263140 -1.320435   
 693                0.190942         -0.939096 -0.692937   
 441               -1.574681         -1.344669  0.091435   
 467               -1.574681         -1.344669  0.091435   
 10                 0.568211          1.359154 -0.065439   
 194                0.356940         -0.330735  0.718933   
 681                0.040034         -1.006691  0.718933   
 678                0.190942         -0.668713  1.032682   
 110               -1.574681         -1.344669  0.091435   
 223                1.036026          0.074838  0.562059   
 455               -0.654143          1.426749  0.248310   
 142                0.568211          1.359154 -0.065439   
 674                0.190942         -1.277074  0.091435   
 314               -0.654143         -0.263140 -1.006686   
 40                -0.578689          0.818389 -1.477309   
 23                 0.568211          1.359154 -0.065439   
 92                 0.040034         -0.263140 -1.320435   
 682                1.171843         -0.263140  1.032682   
 22                 2.092381          1.494345 -1.320435   
 68                -1.574681         -1.344669  0.091435   
 20                 1.624567         -0.939096 -1.320435   
 538                0.190942         -0.939096 -0.692937   
 120                0.040034         -0.263140 -1.320435   
 176               -0.654143         -0.263140 -1.006686   
 466                0.568211          1.359154 -0.065439   
 
      Daily Work Load Average  Body Mass Index  Education  Children  
 270                 0.560476         1.002633          0 -0.919030  
 555                 0.218718         1.002633          0 -0.919030  
 106                -0.262439        -0.643782          0 -0.019280  
 388                -0.499679         1.002633          0 -0.919030  
 1                  -0.806331         1.002633          0 -0.019280  
 415                -0.809957        -0.408580          0  1.780219  
 670                -0.637953        -0.408580          0  0.880469  
 611                -0.188851        -0.643782          0 -0.019280  
 141                 0.769711        -0.408580          0  0.880469  
 416                -0.809957         1.237836          0  0.880469  
 500                -0.251187        -1.819793          1 -0.919030  
 184                 1.366488        -0.408580          0 -0.019280  
 253                -0.154696        -1.114186          0 -0.919030  
 525                 0.326336        -0.408580          0  1.780219  
 577                 1.043433        -1.114186          1  0.880469  
 665                -0.637953         0.532229          1 -0.019280  
 526                 0.326336        -0.643782          0 -0.019280  
 619                -1.240355         1.237836          0  0.880469  
 605                -0.188851         1.002633          0 -0.919030  
 173                 1.786584         1.002633          0 -0.919030  
 151                 0.769711        -0.408580          1 -0.919030  
 87                  0.863727        -0.408580          0 -0.019280  
 343                -0.879469         1.002633          0 -0.019280  
 276                 0.560476         1.943442          0  0.880469  
 167                 1.786584        -0.408580          0  0.880469  
 117                 0.919937        -0.643782          0 -0.019280  
 366                 1.456728         1.002633          0 -0.019280  
 204                 2.677510         0.767431          0  0.880469  
 214                 2.677510        -0.408580          1 -0.919030  
 53                 -0.758273         0.297027          0 -0.919030  
 ..                       ...              ...        ...       ...  
 321                 0.305783        -0.408580          0 -0.019280  
 257                -0.154696        -0.408580          0  0.880469  
 672                -0.637953         1.002633          0 -0.019280  
 509                 0.326336        -0.878984          0 -0.919030  
 493                -0.550213        -0.408580          0 -0.019280  
 626                -1.240355        -0.643782          0 -0.019280  
 693                -0.853789        -0.408580          1 -0.919030  
 441                -0.446195         0.297027          0 -0.919030  
 467                -1.037971         0.297027          0 -0.919030  
 10                 -0.806331        -0.878984          0  2.679969  
 194                 1.366488        -0.878984          0 -0.919030  
 681                -0.853789         0.297027          1  0.880469  
 678                -0.853789         2.649049          0 -0.019280  
 110                -0.262439         0.297027          0 -0.919030  
 223                 2.644155        -0.408580          0 -0.019280  
 455                -0.446195         1.002633          0 -0.919030  
 142                 0.769711        -0.878984          0  2.679969  
 674                -0.853789         0.532229          1 -0.019280  
 314                -0.169648        -1.819793          1 -0.919030  
 40                 -0.758273        -1.349389          0 -0.919030  
 23                 -1.647399        -0.878984          0  2.679969  
 92                  0.863727        -0.643782          0 -0.019280  
 682                -0.853789        -0.408580          0  0.880469  
 22                 -1.647399         0.061825          0 -0.019280  
 68                 -0.458497         0.297027          0 -0.919030  
 20                 -1.647399        -0.408580          1 -0.919030  
 538                -0.082083        -0.408580          1 -0.919030  
 120                 0.919937        -0.643782          0 -0.019280  
 176                 1.786584        -1.819793          1 -0.919030  
 466                -1.037971        -0.878984          0  2.679969  
 
 [525 rows x 13 columns],
      Reason_1  Reason_2  Reason_3  Reason_4  Month Value  Day of the Week  \
 636         0         0         0         1    -1.166834        -1.368999   
 574         1         0         0         0     0.330204        -0.232900   
 226         0         0         0         1    -0.268611        -1.368999   
 621         0         0         0         1    -0.268611         2.039298   
 50          0         0         0         0     0.629611        -1.368999   
 306         0         0         0         1     0.929019         0.335149   
 675         0         0         1         0     0.629611        -0.232900   
 285         0         0         0         0     0.629611         0.335149   
 426         0         0         0         1    -1.166834         2.039298   
 292         0         0         0         1    -0.268611         0.903199   
 399         0         0         0         1    -1.166834        -0.232900   
 60          0         0         0         1     0.629611         0.903199   
 518         0         0         0         1     0.929019        -0.800950   
 694         0         0         0         1    -0.568019        -0.232900   
 400         0         0         0         0    -1.166834        -0.232900   
 284         0         0         0         1     0.629611         0.335149   
 476         0         0         0         1     0.030796        -1.368999   
 36          0         0         0         1    -0.867426        -0.232900   
 503         0         0         0         1     0.629611        -0.232900   
 697         1         0         0         0    -0.568019         0.335149   
 614         0         0         0         1    -1.466241        -0.800950   
 635         1         0         0         0    -1.166834        -1.368999   
 405         0         0         0         0    -1.166834         0.335149   
 46          0         0         0         1     0.629611        -1.368999   
 353         1         0         0         0     1.527833        -0.800950   
 188         0         0         0         1    -0.867426         0.335149   
 648         1         0         0         0    -1.166834        -0.232900   
 55          0         0         0         0     0.629611        -0.800950   
 172         1         0         0         0    -1.166834        -1.368999   
 581         0         0         0         1    -1.765648        -0.232900   
 ..        ...       ...       ...       ...          ...              ...   
 679         1         0         0         0     0.929019         0.903199   
 34          0         0         0         1     0.330204        -1.368999   
 558         1         0         0         0     0.330204         1.471248   
 339         1         0         0         0    -0.568019         0.335149   
 189         0         0         0         1    -0.867426         0.903199   
 180         1         0         0         0    -1.166834         0.335149   
 472         0         0         0         1     0.030796        -0.800950   
 78          0         0         0         1     0.929019         0.903199   
 690         0         0         0         0    -0.568019        -0.232900   
 404         1         0         0         0    -1.166834        -0.232900   
 661         0         1         0         0     0.929019         0.335149   
 218         1         0         0         0     1.228426         1.471248   
 662         0         0         0         1     0.929019         0.335149   
 453         0         0         0         1    -0.268611        -0.232900   
 174         0         0         0         1    -1.166834        -0.232900   
 475         0         0         0         1     0.030796        -1.368999   
 287         1         0         0         0     0.629611        -1.368999   
 657         0         0         1         0    -0.867426        -0.232900   
 643         0         0         0         1    -1.166834         0.335149   
 185         0         0         0         1    -0.867426        -0.232900   
 385         0         0         0         1    -1.466241        -0.232900   
 208         0         0         1         0    -1.166834         1.471248   
 531         1         0         0         0     0.929019        -0.800950   
 434         0         0         1         0    -0.568019        -0.232900   
 638         0         0         0         1    -1.166834        -0.800950   
 66          0         0         0         1     0.929019         0.903199   
 495         0         0         0         1    -0.568019        -0.800950   
 637         1         0         0         0    -1.166834        -1.368999   
 465         0         0         0         1     0.030796         0.903199   
 418         0         0         0         1     1.527833        -1.368999   
 
      Transportation Expense  Distance to Work       Age  \
 636               -0.654143          1.426749  0.248310   
 574               -0.654143         -0.263140 -1.006686   
 226               -1.016322         -1.209478 -0.379188   
 621                0.387122         -0.330735  1.660180   
 50                 0.568211          1.359154 -0.065439   
 306               -1.574681         -1.141882  2.130803   
 675                0.040034         -1.006691  0.718933   
 285                0.190942         -0.668713  1.032682   
 426                0.387122         -0.330735  1.660180   
 292                1.005844          0.412816 -0.536062   
 399                2.092381          1.494345 -1.320435   
 60                -0.654143          1.426749  0.248310   
 518                0.040034         -0.263140 -1.320435   
 694                1.036026          0.074838  0.562059   
 400                2.213108         -0.871500 -0.849811   
 284               -1.574681         -1.141882  2.130803   
 476                0.190942         -0.668713  1.032682   
 36                 1.005844          0.412816 -0.536062   
 503                0.040034         -0.263140 -1.320435   
 697                1.624567         -0.939096 -1.320435   
 614                0.040034         -0.263140 -1.320435   
 635                0.387122         -0.330735  1.660180   
 405                0.190942         -1.277074  0.091435   
 46                -0.654143          1.426749  0.248310   
 353                0.190942         -1.277074  0.091435   
 188               -1.016322         -1.209478 -0.379188   
 648               -1.016322         -1.209478 -0.379188   
 55                -1.574681         -1.141882  2.130803   
 172                0.854936         -1.682647  0.405184   
 581               -0.654143          1.426749  0.248310   
 ..                      ...               ...       ...   
 679               -0.654143         -0.263140 -1.006686   
 34                -0.654143          1.426749  0.248310   
 558               -0.654143         -0.263140 -1.006686   
 339                0.040034         -0.263140 -1.320435   
 189                0.040034         -0.263140 -1.320435   
 180                0.854936         -1.682647  0.405184   
 472               -0.654143          1.426749  0.248310   
 78                 2.092381          1.494345 -1.320435   
 690                2.348925          1.291558 -0.065439   
 404               -1.574681         -1.141882  2.130803   
 661               -0.654143         -0.533522  0.562059   
 218               -1.574681         -1.141882  2.130803   
 662               -1.574681         -1.141882  2.130803   
 453                0.040034         -0.263140 -1.320435   
 174                0.040034         -0.263140 -1.320435   
 475                1.005844          0.412816 -0.536062   
 287                1.036026          0.074838  0.562059   
 657                0.387122         -0.330735  1.660180   
 643               -0.654143          1.426749  0.248310   
 185                0.040034         -0.263140 -1.320435   
 385               -0.654143          1.426749  0.248310   
 208                0.040034         -0.263140 -1.320435   
 531                0.040034         -0.263140 -1.320435   
 434                0.085306         -1.074287  3.385799   
 638               -0.654143          1.426749  0.248310   
 66                -0.654143          1.426749  0.248310   
 495                0.356940         -0.330735  0.718933   
 637                0.040034         -0.263140 -1.320435   
 465               -1.574681         -1.344669  0.091435   
 418               -0.654143          1.426749  0.248310   
 
      Daily Work Load Average  Body Mass Index  Education  Children  
 636                -1.240355         1.002633          0 -0.919030  
 574                 1.043433        -1.819793          1 -0.919030  
 226                 2.644155        -0.408580          0  0.880469  
 621                -1.240355         1.237836          0  0.880469  
 50                 -0.758273        -0.878984          0  2.679969  
 306                -0.169648         1.002633          0 -0.019280  
 675                -0.853789         0.297027          1  0.880469  
 285                 0.560476         2.649049          0 -0.019280  
 426                -0.643304         1.237836          0  0.880469  
 292                -0.169648         0.767431          0  0.880469  
 399                -0.685486         0.061825          0 -0.019280  
 60                 -0.758273         1.002633          0 -0.919030  
 518                 0.326336        -0.643782          0 -0.019280  
 694                -0.853789        -0.408580          0 -0.019280  
 400                -0.685486        -0.408580          0  1.780219  
 284                 0.560476         1.002633          0 -0.019280  
 476                -1.037971         2.649049          0 -0.019280  
 36                 -1.647399         0.767431          0  0.880469  
 503                -0.251187        -0.643782          0 -0.019280  
 697                -0.853789        -0.408580          1 -0.919030  
 614                -0.188851        -0.643782          0 -0.019280  
 635                -1.240355         1.237836          0  0.880469  
 405                -0.685486         0.532229          1 -0.019280  
 46                 -0.758273         1.002633          0 -0.919030  
 353                -0.879469         0.532229          1 -0.019280  
 188                 1.366488        -0.408580          0  0.880469  
 648                -1.240355        -0.408580          0  0.880469  
 55                 -0.758273         1.002633          0 -0.019280  
 172                 1.786584        -0.643782          0  0.880469  
 581                 1.043433         1.002633          0 -0.919030  
 ..                       ...              ...        ...       ...  
 679                -0.853789        -1.819793          1 -0.919030  
 34                 -1.647399         1.002633          0 -0.919030  
 558                 0.218718        -1.819793          1 -0.919030  
 339                -0.879469        -0.643782          0 -0.019280  
 189                 1.366488        -0.643782          0 -0.019280  
 180                 1.786584        -0.643782          0  0.880469  
 472                -1.037971         1.002633          0 -0.919030  
 78                 -0.458497         0.061825          0 -0.019280  
 690                -0.853789        -1.349389          0  0.880469  
 404                -0.685486         1.002633          0 -0.019280  
 661                -0.637953        -1.114186          1  0.880469  
 218                 2.677510         1.002633          0 -0.019280  
 662                -0.637953         1.002633          0 -0.019280  
 453                -0.446195        -0.643782          0 -0.019280  
 174                 1.786584        -0.643782          0 -0.019280  
 475                -1.037971         0.767431          0  0.880469  
 287                 0.560476        -0.408580          0 -0.019280  
 657                -0.637953         1.237836          0  0.880469  
 643                -1.240355         1.002633          0 -0.919030  
 185                 1.366488        -0.643782          0 -0.019280  
 385                -0.499679         1.002633          0 -0.919030  
 208                 2.677510        -0.643782          0 -0.019280  
 531                 0.326336        -0.643782          0 -0.019280  
 434                -0.643304        -1.114186          0  0.880469  
 638                -1.240355         1.002633          0 -0.919030  
 66                 -0.458497         1.002633          0 -0.919030  
 495                -0.251187        -0.878984          0 -0.919030  
 637                -1.240355        -0.643782          0 -0.019280  
 465                -1.037971         0.297027          0 -0.919030  
 418                -0.809957         1.002633          0 -0.919030  
 
 [175 rows x 13 columns],
 array([1, 1, 0, 0, 0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1, 1,
        0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1,
        1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1,
        0, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1,
        0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0,
        0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1,
        1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0,
        1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0,
        0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0,
        1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0,
        0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0,
        0, 1, 1, 0, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 0, 0, 1,
        1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1,
        0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0,
        0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1,
        1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1,
        0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1,
        0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0,
        1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1,
        0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 0, 0,
        0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 1, 0, 1, 0,
        1, 1, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1,
        1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 1,
        1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1]),
 array([0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0,
        0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0,
        1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1,
        0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1,
        0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1,
        1, 0, 1, 1, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 0, 1,
        0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0,
        1, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1, 1])]
X_train, X_test, y_train, y_test=train_test_split(scaled_inputs, targets, train_size = 0.8, random_state = 20)
C:\Users\User\Anaconda3\lib\site-packages\sklearn\model_selection\_split.py:2179: FutureWarning: From version 0.21, test_size will always complement train_size unless both are specified. FutureWarning)
print (X_train.shape, y_train.shape)
(560, 13) (560,)
print (X_test.shape, y_test.shape)
(140, 13) (140,)
#Logistic regression with sklearn 
from sklearn.linear_model import LogisticRegression
from sklearn import metrics
reg = LogisticRegression()
reg.fit(X_train, y_train)
C:\Users\User\Anaconda3\lib\site-packages\sklearn\linear_model\logistic.py:433: FutureWarning: Default solver will be changed to 'lbfgs' in 0.22. Specify a solver to silence this warning. FutureWarning)
LogisticRegression(C=1.0, class_weight=None, dual=False, fit_intercept=True,
          intercept_scaling=1, max_iter=100, multi_class='warn',
          n_jobs=None, penalty='l2', random_state=None, solver='warn',
          tol=0.0001, verbose=0, warm_start=False)
reg.score(X_train, y_train)
0.775
#Manual Check
model_outputs = reg.predict(X_train)
model_outputs
array([0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0,
       0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 1, 1, 1,
       1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0,
       0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 0,
       0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 0, 0, 1, 0,
       0, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0,
       0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0,
       1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 1, 0,
       0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1,
       1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1,
       1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0,
       0, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1,
       0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0,
       0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0,
       1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1,
       0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1,
       0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0,
       1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0,
       0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0,
       0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0,
       0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0,
       1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0,
       0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0,
       0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1,
       0, 1, 1, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0,
       0, 1, 0, 1, 1, 1, 0, 0, 1, 0])
y_train
array([0, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0,
       1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1,
       1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0,
       0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1,
       1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 0, 0, 1, 0,
       0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 1,
       0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1,
       0, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0,
       0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1,
       1, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 1, 0, 0,
       1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0,
       0, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0,
       0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0,
       1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 0,
       0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 1,
       1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1,
       0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0,
       1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0,
       0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1,
       0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0,
       0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0,
       1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0,
       1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1,
       0, 1, 0, 0, 1, 0, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 0,
       0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0,
       0, 0, 0, 1, 1, 1, 1, 0, 1, 0])
model_outputs == y_train
array([ True,  True, False,  True,  True,  True,  True,  True,  True,
        True, False,  True, False, False,  True,  True,  True,  True,
       False,  True, False,  True, False, False,  True,  True,  True,
       False,  True,  True,  True,  True,  True,  True,  True,  True,
       False, False,  True, False,  True, False,  True,  True,  True,
        True,  True,  True,  True,  True, False,  True,  True,  True,
        True,  True,  True,  True,  True, False,  True,  True,  True,
        True,  True,  True,  True, False,  True, False,  True,  True,
        True,  True,  True, False,  True,  True,  True,  True,  True,
       False,  True, False,  True,  True, False, False, False,  True,
        True,  True,  True,  True,  True,  True,  True,  True,  True,
        True,  True,  True,  True,  True,  True,  True,  True,  True,
        True,  True,  True,  True, False,  True,  True,  True,  True,
        True,  True,  True,  True,  True, False,  True,  True,  True,
        True,  True,  True,  True,  True, False,  True,  True,  True,
        True, False,  True,  True,  True,  True,  True, False, False,
        True, False,  True, False,  True,  True,  True,  True, False,
       False, False,  True,  True, False, False, False,  True,  True,
        True, False,  True, False,  True, False,  True, False,  True,
        True,  True,  True,  True,  True,  True,  True,  True,  True,
        True,  True,  True,  True,  True, False,  True,  True,  True,
        True, False,  True,  True,  True,  True,  True,  True,  True,
        True,  True,  True,  True,  True, False, False,  True, False,
       False,  True,  True,  True,  True,  True,  True,  True, False,
        True, False,  True, False,  True,  True,  True,  True, False,
        True, False, False,  True,  True,  True,  True,  True, False,
       False, False,  True, False,  True,  True,  True,  True,  True,
        True,  True,  True,  True,  True,  True, False,  True,  True,
        True,  True,  True,  True,  True,  True,  True,  True,  True,
        True, False, False,  True,  True,  True,  True,  True,  True,
       False,  True,  True,  True,  True,  True,  True, False, False,
       False,  True,  True,  True,  True, False,  True, False,  True,
        True,  True,  True,  True,  True,  True, False,  True, False,
       False,  True,  True,  True,  True,  True, False,  True,  True,
        True,  True, False, False,  True, False,  True,  True,  True,
        True,  True, False,  True,  True, False,  True,  True, False,
       False, False,  True,  True,  True,  True, False,  True, False,
        True,  True,  True, False, False,  True,  True,  True, False,
        True, False,  True,  True,  True, False,  True,  True,  True,
        True,  True,  True,  True,  True,  True,  True,  True,  True,
       False,  True,  True, False,  True, False,  True,  True,  True,
        True,  True,  True,  True,  True,  True,  True, False,  True,
        True,  True,  True, False,  True,  True,  True, False,  True,
        True,  True,  True,  True,  True,  True,  True, False,  True,
        True,  True,  True,  True,  True, False,  True,  True,  True,
        True,  True,  True, False,  True,  True,  True,  True,  True,
        True,  True,  True, False,  True, False,  True,  True,  True,
        True,  True,  True, False,  True,  True, False,  True, False,
        True,  True,  True,  True,  True, False, False,  True,  True,
        True,  True,  True,  True,  True,  True,  True, False,  True,
       False,  True,  True,  True, False, False,  True,  True,  True,
        True, False,  True,  True,  True,  True,  True,  True,  True,
        True,  True, False,  True,  True, False, False,  True,  True,
       False,  True,  True,  True,  True,  True,  True, False,  True,
        True,  True, False,  True,  True,  True,  True,  True,  True,
        True,  True,  True,  True, False,  True,  True,  True,  True,
        True, False,  True,  True, False, False,  True,  True,  True,
       False,  True,  True,  True,  True,  True, False,  True,  True,
       False, False, False,  True,  True, False,  True,  True,  True,
       False,  True,  True,  True,  True,  True,  True,  True,  True,
        True,  True,  True, False,  True,  True,  True,  True,  True,
        True,  True, False,  True,  True,  True,  True, False,  True,
        True,  True])
np.sum(model_outputs == y_train)
434
model_outputs.shape[0]
560
np.sum(model_outputs == y_train) / model_outputs.shape[0]
0.775
#Finding intercept and coefficients
reg.intercept_
array([-1.44858081])
reg.coef_
array([[ 2.63259611,  0.86935993,  2.81289745,  0.65092627,  0.00723232,
        -0.07199168,  0.49781562, -0.03874266, -0.12321956, -0.02108164,
         0.26813826, -0.23006247,  0.37360592]])
unscaled_inputs.columns.values
array(['Reason_1', 'Reason_2', 'Reason_3', 'Reason_4', 'Month Value',
       'Day of the Week', 'Transportation Expense', 'Distance to Work',
       'Age', 'Daily Work Load Average', 'Body Mass Index', 'Education',
       'Children'], dtype=object)
feature_name = unscaled_inputs.columns.values
summary_table = pd.DataFrame (columns=['Feature name'], data = feature_name)
summary_table['Coefficient'] = np.transpose(reg.coef_)
summary_table
| Feature name | Coefficient | |
|---|---|---|
| 0 | Reason_1 | 2.632596 | 
| 1 | Reason_2 | 0.869360 | 
| 2 | Reason_3 | 2.812897 | 
| 3 | Reason_4 | 0.650926 | 
| 4 | Month Value | 0.007232 | 
| 5 | Day of the Week | -0.071992 | 
| 6 | Transportation Expense | 0.497816 | 
| 7 | Distance to Work | -0.038743 | 
| 8 | Age | -0.123220 | 
| 9 | Daily Work Load Average | -0.021082 | 
| 10 | Body Mass Index | 0.268138 | 
| 11 | Education | -0.230062 | 
| 12 | Children | 0.373606 | 
summary_table.index = summary_table.index + 1
summary_table.loc[0] = ['Intercept', reg.intercept_[0]]
summay_table = summary_table.sort_index()
summary_table
| Feature name | Coefficient | |
|---|---|---|
| 1 | Reason_1 | 2.632596 | 
| 2 | Reason_2 | 0.869360 | 
| 3 | Reason_3 | 2.812897 | 
| 4 | Reason_4 | 0.650926 | 
| 5 | Month Value | 0.007232 | 
| 6 | Day of the Week | -0.071992 | 
| 7 | Transportation Expense | 0.497816 | 
| 8 | Distance to Work | -0.038743 | 
| 9 | Age | -0.123220 | 
| 10 | Daily Work Load Average | -0.021082 | 
| 11 | Body Mass Index | 0.268138 | 
| 12 | Education | -0.230062 | 
| 13 | Children | 0.373606 | 
| 0 | Intercept | -1.448581 | 
summary_table['Odd ratio'] = np.exp(summary_table.Coefficient)
summary_table 
| Feature name | Coefficient | Odd ratio | |
|---|---|---|---|
| 1 | Reason_1 | 2.632596 | 13.909835 | 
| 2 | Reason_2 | 0.869360 | 2.385384 | 
| 3 | Reason_3 | 2.812897 | 16.658114 | 
| 4 | Reason_4 | 0.650926 | 1.917316 | 
| 5 | Month Value | 0.007232 | 1.007259 | 
| 6 | Day of the Week | -0.071992 | 0.930539 | 
| 7 | Transportation Expense | 0.497816 | 1.645124 | 
| 8 | Distance to Work | -0.038743 | 0.961998 | 
| 9 | Age | -0.123220 | 0.884070 | 
| 10 | Daily Work Load Average | -0.021082 | 0.979139 | 
| 11 | Body Mass Index | 0.268138 | 1.307528 | 
| 12 | Education | -0.230062 | 0.794484 | 
| 13 | Children | 0.373606 | 1.452964 | 
| 0 | Intercept | -1.448581 | 0.234903 | 
summary_table.sort_values('Odd ratio', ascending=False)
| Feature name | Coefficient | Odd ratio | |
|---|---|---|---|
| 3 | Reason_3 | 2.812897 | 16.658114 | 
| 1 | Reason_1 | 2.632596 | 13.909835 | 
| 2 | Reason_2 | 0.869360 | 2.385384 | 
| 4 | Reason_4 | 0.650926 | 1.917316 | 
| 7 | Transportation Expense | 0.497816 | 1.645124 | 
| 13 | Children | 0.373606 | 1.452964 | 
| 11 | Body Mass Index | 0.268138 | 1.307528 | 
| 5 | Month Value | 0.007232 | 1.007259 | 
| 10 | Daily Work Load Average | -0.021082 | 0.979139 | 
| 8 | Distance to Work | -0.038743 | 0.961998 | 
| 6 | Day of the Week | -0.071992 | 0.930539 | 
| 9 | Age | -0.123220 | 0.884070 | 
| 12 | Education | -0.230062 | 0.794484 | 
| 0 | Intercept | -1.448581 | 0.234903 | 
#Test the model
reg.score(X_test, y_test)
0.7357142857142858
predicted_proba = reg.predict_proba(X_test) predicted_proba
predicted_proba.shape
(140, 2)
predicted_proba[:,1]
array([0.22123841, 0.36746562, 0.50004073, 0.2089951 , 0.90917697,
       0.69301566, 0.77107214, 0.8859558 , 0.29549433, 0.22275347,
       0.60483662, 0.73858908, 0.90619582, 0.34200406, 0.74793341,
       0.40182971, 0.5876329 , 0.55788212, 0.68102628, 0.92943054,
       0.31492142, 0.21583614, 0.56698637, 0.54895219, 0.79581917,
       0.29599005, 0.44955041, 0.11650185, 0.71867643, 0.22283802,
       0.39170243, 0.77004683, 0.66038918, 0.60501965, 0.21583614,
       0.55420036, 0.30950994, 0.73126219, 0.4762001 , 0.53951185,
       0.23294667, 0.43933879, 0.29219299, 0.38449721, 0.83762964,
       0.61556479, 0.73604752, 0.23015421, 0.23219654, 0.20045226,
       0.49883448, 0.25661573, 0.67030132, 0.22865307, 0.83616221,
       0.40858324, 0.93437215, 0.28932031, 0.31364181, 0.30863997,
       0.69642044, 0.64430772, 0.28256538, 0.80449431, 0.3206113 ,
       0.2233284 , 0.07984234, 0.2970576 , 0.70680172, 0.34453101,
       0.30245977, 0.27141705, 0.87740585, 0.4721832 , 0.58892078,
       0.22283802, 0.73379547, 0.76353833, 0.69165819, 0.7104776 ,
       0.31898675, 0.10771716, 0.27265444, 0.75448359, 0.45855206,
       0.11668418, 0.67523916, 0.54083882, 0.24313306, 0.76272556,
       0.19101949, 0.12667202, 0.23921305, 0.21523928, 0.20891439,
       0.86219705, 0.21096595, 0.74876632, 0.2087725 , 0.21414747,
       0.57956994, 0.77720819, 0.66970792, 0.63896825, 0.46203675,
       0.46309751, 0.20777203, 0.84696265, 0.70341205, 0.15023138,
       0.10739748, 0.90589125, 0.61112564, 0.39813828, 0.54901137,
       0.56430009, 0.73877163, 0.85001406, 0.60503429, 0.33763649,
       0.21222172, 0.12312327, 0.74375883, 0.49875672, 0.23153799,
       0.31677329, 0.21174627, 0.14713078, 0.66145911, 0.32819144,
       0.57901301, 0.21977403, 0.21528198, 0.32006295, 0.27893506,
       0.55763394, 0.55818079, 0.32170334, 0.22976194, 0.49689852])